If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49z^2-13=0
a = 49; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·49·(-13)
Δ = 2548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2548}=\sqrt{196*13}=\sqrt{196}*\sqrt{13}=14\sqrt{13}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{13}}{2*49}=\frac{0-14\sqrt{13}}{98} =-\frac{14\sqrt{13}}{98} =-\frac{\sqrt{13}}{7} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{13}}{2*49}=\frac{0+14\sqrt{13}}{98} =\frac{14\sqrt{13}}{98} =\frac{\sqrt{13}}{7} $
| 14=2x-17-2x | | 400-n=8 | | (x+2)(x+3)-(2x-5)(x+3)=x(x-5) | | 8-n=4.00 | | 4.5m=-65 | | 4a=3=19 | | 7b^2-6b=0 | | 3x+6+x-10+x-11=180 | | 7x-38=9x+16 | | 18+5p+5=23+5p | | 5.25y=-52.5 | | -0.375c−11=1 | | 15x-6=60 | | 2(x+2)-(7+x)=-2 | | 15x+60=90 | | 1.73x=496.8 | | 25=-1.4x+117.8 | | X-1=7y | | 4k-20=60 | | 8x2+25x+13=0 | | 14q-12q-1=19 | | 3.4x+1225=11.56+35x | | 10v+5v-5v-10=10 | | 90+65x+5+11x=180 | | 500x=15500 | | 3z+3z-5z=14 | | 21x2-12x+1=0 | | 7k-4k+k+4k-5k=15 | | -10=3w+8 | | (2x+1)-x=4x+3-3x | | 15x2-26x-21=0 | | -2x4= |